Question 1099544
So the plane's velocity broken down into components is,
({{{120cos(115)}}},{{{120sin(115)}}})=({{{-50.7}}},{{{108.8}}})
So the wind is coming out of the east so it's components are
({{{-30}}},{{{0}}})
So then adding,
({{{V{x]}}},{{{V[y]}}})= ({{{-50.7-30}}},{{{108.8}}})=({{{-80.7}}},{{{108.8}}})

The resultant is then,
{{{V=sqrt((-80.7)^2+108.8^2)=135.5}}}{{{mph}}}