Question 97956
Use the formula for the area of a triangle:
Area = (1/2)(base)(length)
x^2+5x+6 = (1/2)(base)(x+3) [solve for the base (b)]
{{{((2)(x^2+5x+6)/(x+3))}}}= b

{{{((2x^2+10x+12)/(x+3))}}}= b  [divide]
2x+4=b
.
Checking:
A=(1/2)(b)(h)
{{{(x^2+5x+6))}}}={{{((1/2)(2x+4)(x+3)))}}} [plug-in the values and solve]
{{{(x^2+5x+6))}}}={{{(1/2)(2x^2+10x+12))}}}[divide by (1/2)]
{{{(x^2+5x+6))}}}={{{(x^2+5x+6))}}}