Question 1098235
Hi, I posted a link to my question because it wasn’t letting me copy and paste. 

https://imgur.com/a/oEBFM


Thank you! :)
<pre>The quadratic equation formula, based on the quadratic equation: {{{matrix(1,3, ax^2 + bx + c, "=", 0)}}}, is: {{{matrix(1,3, x, "=", (- b +- sqrt(b^2 - 4ac))/(2a))}}}
The quadratic equation formula, based on the quadratic equation: {{{matrix(1,3, ak^2 + bk + c, "=", 0)}}}, is: {{{matrix(1,3, k, "=", (- b +- sqrt(b^2 - 4ac))/(2a))}}}
                                        Your quadratic equation: {{{matrix(1,3, 3k^2 - k - 9, "=", 0)}}}, so we get: {{{matrix(1,3, k, "=", (- b +- sqrt(b^2 - 4ac))/(2a))}}} 
                                                                 {{{matrix(1,3, k, "=", (- - 1 +- sqrt((- 1)^2 - 4(3)(- 9)))/(2(3)))}}} 
                                                                 {{{matrix(1,3, k, "=", (1 +- sqrt(1 + 108))/6))}}} ====> {{{highlight_green(matrix(1,3, k, "=", (1 +- sqrt(109))/6)))}}}
Can you now tell what N, D, and M are? You should be able to!
The more difficult part is now done for you, so use your calculator to determine the answer to B).