Question 1098165
.
<U>1 - the system of 2 equations</U>


<pre>
F + B = 375,          (1)    (counting seats)
25*F + 21*B = 8875.   (2)    (counting money)


To solve it, express F = 375 - B from (1) and substitute into (2). You will get

a single equation for one unknown B:

25*(375 - B) + 21*B = 8875.     (3)


Simplify and solve for B.

When you find B, calculate F from (1).
</pre>

<U>2 - One equation</U>


<pre>
Let B be the number of the Balcony seats.

Then the number of the Floor seats is (375-B).


The "money" equation is

25*(375 - B) + 21*B = 8875,


exactly as (3).
</pre>


If you want to see more solved problems of this type, look into the lesson

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/coordinate/lessons/Using-systems-of-equations-to-solve-problems-on-Tickets.lesson>Using systems of equations to solve problems on tickets</A> 

in this site.



Also, &nbsp;you have this free of charge online textbook in ALGEBRA-I in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-I - YOUR ONLINE TEXTBOOK</A>.


The referred lesson is the part of this online textbook under the topic "<U>Systems of two linear equations in two unknowns</U>".



Save the link to this online textbook together with its description


Free of charge online textbook in ALGEBRA-I

https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson


to your archive and use it when it is needed.