Question 1096502
<font color="black" face="times" size="3">
Use the compound interest formula: 


{{{A = P(1+r/n)^(n*t)}}}


------------------------------------------

where,


A = amount in the account after t years
P = initial amount invested
r = interest rate (in decimal form)
n = compounding frequency
t = number of years


In this case,


A = unknown (we're solving for this)
P = 140
r = 0.03 (3% = 3/100 = 0.03)
n = 1 (the money is compounded 1 time per year)
t = 16


------------------------------------------


Plug all these values into the formula to get...


{{{A = P(1+r/n)^(n*t)}}}


{{{A = 140(1+0.03/1)^(1*16)}}}


{{{A = 140(1+0.03)^(1*16)}}}


{{{A = 140(1.03)^(1*16)}}}


{{{A = 140(1.03)^(16)}}}


{{{A = 140(1.60470643909879)}}}


{{{A = 224.65890147383}}}


{{{A = 224.66}}} Round to the nearest cent (hundredth)


------------------------------------------
------------------------------------------


Final Answer: <font color=red size=4>$224.66</font>

</font>