Question 1095580
<font color="black" face="times" size="3">I'm going to assume that the given expression is {{{x/(5-x) + 7/(x-5)}}}


If the assumption is correct, then please use parenthesis. Saying x/(5-x) means you divide x all over (5-x) giving {{{x/(5-x)}}}. The same applies for 7/(x-5) to indicate {{{7/(x-5)}}}


---------------------------------


{{{x/(5-x) + 7/(x-5)}}}


{{{x/(-1(-5+x)) + 7/(x-5)}}} Factor -1 out of the expression 5-x to get -1(-5+x)


{{{x/(-1(x-5)) + 7/(x-5)}}} Rearrange -5+x into x-5


{{{(-x)/(x-5) + 7/(x-5)}}} Simplify the first fraction. Note how the denominators are now both (x-5). This means we can combine the numerators over this common denominator. 


{{{(-x+7)/(x-5)}}}


---------------------------------


So {{{x/(5-x) + 7/(x-5)}}} simplifies to {{{(-x+7)/(x-5)}}}


</font>