Question 1095165
.
<pre>
{{{5x^3 + 45x}}} = {{{2x^2+18}}}  ====>

{{{5x*(x^2+9)}}} = {{{2*(x^2+9)}}}    ====>

{{{5x*(x^2+9)}}} - {{{2*(x^2+9)}}}  = 0  ====>  

{{{(5x-2)*(x^2+9)}}} = 0  ====>


There is one real root  {{{x[1]}}} = {{{2/5}}}  and two complex roots  {{{x[2]}}} = 3i,  {{{x[3]}}} = -3i.
</pre>

Solved.