Question 1094771
5^(2x+1) + 25 = 5^(x+3) + 5^x
<pre>{{{5^(2x + 1) + 25 = 5^(x + 3) + 5^x }}}
{{{5^(2x + 1) - 5^(x + 3) - 5^x + 25 = 0}}}
{{{(5^(2x) * 5^1) - (5^x * 5^3) - 5^x + 25 = 0}}}
{{{(5^x * 5^x * 5^1) - (5^x * 5^3) - 5^x + 25 = 0}}}
(a * a * 5) – (a * 125) – a + 25 = 0 -------- Substituting {{{matrix(1,3, a, for, 5^x)}}}
{{{5a^2 - 125a - a + 25 = 0}}}
5a(a - 25) - 1(a - 25) = 0
(5a – 1)(a – 25) = 0
5a – 1 = 0	OR 		a – 25 = 0 
5a = 1		OR		a = 0 + 25 
{{{matrix(1,3, a, "=", 1/5)}}}		OR		a = 25

{{{matrix(1,5, a, "=", 1/5, "=", 5^x)}}}   	    OR 	      {{{matrix(1,5, a, "=", 25, "=", 5^x)}}}
{{{matrix(1,3, 5^x, "=", 1/5)}}}	    OR	      {{{matrix(1,3, 5^x, "=", 25)}}}
{{{matrix(1,3, 5^x, "=", 5^(- 1))}}}	    OR        {{{matrix(1,3, 5^x, "=", 5^2)}}}
{{{highlight_green(system(matrix(1,3, x, "=", - 1), or, matrix(1,3, x, "=", 2)))}}}</pre>