Question 1093899
{{{ A }}} is the amount you end up with after {{{ t }}} years
{{{ P }}} is the amount you begin investing with
{{{ r }}} is the interest rate
{{{ n }}} is the number of times you compound per year
------------------------------------------------
Note that unless you know what {{{ n }}} and {{{ t }}} are
for instance, if {{{ nt = 6 }}}, you could have {{{ 1*6 = 6 }}} or
{{{ 2*3 = 6 }}}. 
-----------------------
(1) {{{ n = 1 }}}
{{{ A = P*( 1 + r/n )^(nt) }}}
{{{ A = 1000*( 1 + .07/1 )^( 1*30 ) }}}
{{{ A = 1000*1.07^30 }}}
{{{ A = 1000*7.6123 }}}
{{{ A = 7612.3 }}}
$7,612.30 ending balance
------------------------------
(2) {{{ n = 2 }}}
{{{ A = P*( 1 + r/n )^(nt) }}}
{{{ A = 1000*( 1 + .07/2 )^(2*30) }}}
{{{ A = 1000*1.035^60 }}}
{{{ A = 1000*7.8781 }}}
{{{ A = 7878.1 }}}
$7,878.10 ending balance
---------------------------------
get a 2nd opinion, too, if needed
on the problems