Question 97287
This problem represents one fraction being divided by another fraction.  In other words, we have the general form:

{{{(a/b)/(c/d)}}} where {{{a/b}}} is the numerator and {{{c/d}}} is the denominator and in this problem:

a=w+3
b=4w
c=w-3
d=2w

Now we will simplify {{{(a/b)/(c/d)}}}  and then substitute the values for a,b,c & d:

We can simplify this complex fraction by making the denominator equal to 1. we do this by multiplying both the numerator and denominator by {{{d/c}}} and we get:

{{{((a/b)(d/c))/((c/d)(d/c))}}} and this gives us:

{{{((ad)/(bc))/1}}} or {{{(ad)/(bc)}}} now substituting for a,b,c&d, we get:

{{{((2w)(w+3))/((4w)(w-3))}}} and this reduces to:

{{{(w+3)/(2(w-3))}}}


Hope this helps-----ptaylor