Question 1093304
We want the length of a diagonal(d) of the isosceles trapezoid
:
the 16cm base extends 2cm on either side( (16-12) / 2 )
:
14^2 + 2^2 = d^2
:
d = square root(14^2 + 2^2) = 14.14
:
we are given
:
1) the equal sides of trapezoid, a = 2 * square root(2)
2) bases b = 16, c = 12
:
let s = (a + d + c) / 2 = (2*square root(2) + 14.14 + 12) / 2 = 14.48
:
Radius of circumscribed circle =
:
(a * d * c) / ( 4 * square root(s * (s-a) * (s-d) * (s-c) ) =
:
(2*square root(2) * 14.14 * 12) / ( 4 * square root( 14.48 * (14.48-2*square root(2) * (14.48-14.14) * (14.48-12) ) =
:
479.93 / 47.71 = 10.06
:
******************************************
Radius of circumscribed circle = 10.06 cm
******************************************
: