Question 1091970

Given: {{{N}}} is the midpoint of segment {{{PS}}}.
Prove: {{{PN=(1/2)(PQ) }}} -> it should be {{{highlight(PS)}}}, not {{{(PQ) }}} 


Statements.............................................................Reasons
{{{N}}} is the midpoint of {{{PS}}}.......................................Given
{{{PN}}} congruent to {{{NS}}}............................................Definition of Midpoint
{{{PN=NS}}}..............................................................Definition of Congruence
{{{PN+NS =PS}}}.....................................................Segment Addition Postulate
{{{PN +PN=PS}}}.....................................................Substitution Property
{{{2PN=PS}}}..............................................................Simple addition
{{{PN=(1/2)(PS)}}} ............................................................Division Property of Equality