Question 1091437
.
On dot-product, see the lessons in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Vectors/Introduction-to-dot-product.lesson>Introduction to dot-product</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Vectors/Formula-for-Dot-product-of-vectors-in-a-plane-via-the-vectors-components.lesson>Formula for Dot-product of vectors in a plane via the vectors components</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Vectors/Dot-product-of-vectors-in-a-plane-and-the-angle-between-two-vectors.lesson>Dot-product of vectors in a coordinate plane and the angle between two vectors</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Vectors/Perpendicular-vectors-in-a-coordinate-plane.lesson>Perpendicular vectors in a coordinate plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Vectors/Solved-problems-on-Dot-product-of-vectors-and-the-angle-between-two-vectors.lesson>Solved problems on Dot-product of vectors and the angle between two vectors</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Vectors/Properties-of-Dot-product-of-vectors-in-a-coordinate-plane.lesson>Properties of Dot-product of vectors in a coordinate plane</A> 

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Vectors/The-formula-for-the-angle-between-two-vectors-and-the-formula-of-cosines-of-the-difference-of-two-angles.lesson>The formula for the angle between two vectors and the formula for cosines of the difference of two angles</A>


&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-find-dot-product-of-two-vectors-in-a-plane.lesson>HOW TO find dot-product of two vectors in a plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-find-scalar-product-of-two-vectors-in-a-coordinate-plane.lesson>HOW TO find scalar product of two vectors in a coordinate plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-find-the-angle-between-two-vectors-in-a-coordinate-plane.lesson>HOW TO find the angle between two vectors in a coordinate plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-prove-that-two-vectors-in-a-coordinate-plane-are-perpendicular.lesson>HOW TO prove that two vectors in a coordinate plane are perpendicular</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-prove-that-a-triangle-in-a-coordinate-plane-is-a-right-triangle.lesson>HOW TO prove that a triangle in a coordinate plane is a right triangle</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-prove-that-a-quadrilateral-in-a-coordinate-plane-is-a-parallelogram.lesson>HOW TO check if a quadrilateral in a coordinate plane is a parallelogram</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-check-if-a-quadrilateral-in-a-coordinate-plane-is-a-rectangle.lesson>HOW TO check if a quadrilateral in a coordinate plane is a rectangle</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-check-if-a-quadrilateral-in-a-coordinate-plane-is-a-rhombus.lesson>HOW TO check if a quadrilateral in a coordinate plane is a rhombus</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/word/geometry/HOW-TO-check-if-a-quadrilateral-in-a-coordinate-plane-is-a-square.lesson>HOW TO check if a quadrilateral in a coordinate plane is a square</A>



Also, &nbsp;you have this free of charge online textbook in ALGEBRA-II in this site

&nbsp;&nbsp;&nbsp;&nbsp;<A HREF=https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-II - YOUR ONLINE TEXTBOOK</A>.


The referred lessons are the part of this online textbook under the topic &nbsp;"<U>Dot-product for vectors in a coordinate plane</U>".