Question 96920
Three digit number. The sum of the digits of a three-digit number is 11. If the digits are reversed, the new number is 46 more than five times the old number. If the hundreds digit plus twice the tens digit is equal to the units digit, then what is the number.
----------------------------
Let the number be 10^2h+10t+u
EQUATION:
h+t+u=11
The reverse of the number is 10^2u+10t+h
EQUATION:
10^2u+10t+h = 5(10^h+10t+u)+46
100u+10t+h = 500h+50t+5u+46
499h+40t-95u=-46
-----------------
EQUATION:
h+2t-u=0
---------------
Rearranging the equations:
h t+ u=11
h+2t-u=0
499h+40t-95u=-46
--------------
Using the Matrix function of a TI calculator
I get:
h=1 ; t=3; u=7
The number is 137
======================
Cheers,
Stan H.