Question 1090577
*[illustration 235.JPG].
Not sure how you get actual distances from a scale drawing.
You can get an estimate of the distances.
.
.
.
I'm solving it algebraically.
.
.
.
So let's set up a coordinate system with (0,0) at A.
So then B is (90,0).
Angle A is 47.1.
Angle B is 62.7.
Angle C is 70.2.
So then the coordinates of C is 
C:({{{85cos(47.1)}}},{{{85sin(47.1)}}})
C:({{{57.86}}},{{{62.27}}})
The midpoint of AC would then be half of those values.
{{{M[AC]}}}=({{{28.9}}},{{{31.2}}})
So then using the distance formula.
{{{D{1]^2=(90-28.9)^2+(0-31.2)^2}}}
Solve for {{{D[1]}}}.
.
.
.
The midpoint of BC is calculated using the points B and C.
It's the average of the x and y values.
{{{M[BCx]=(90+57.86)/2=73.9}}}
{{{M[BCy]=(0+62.27)/2=31.2}}}
{{{M[BC]}}}=({{{73.9}}},{{{31.2}}})
Again use the distance formula,
{{{D[2]^2=(0-73.9)^2+(0-31.2)^2}}}
Solve for {{{D[2]}}}.