Question 1090044
{{{x/(x-3)-(22x^2-20x-9-4x^3)/(2x^2-5x-3)+2=2/(2x+1)}}}


{{{x/(x-3)-(22x^2-20x-9-4x^3)/(2x^2-6x+x-3)+2=2/(2x+1)}}}


{{{x/(x-3)-(22x^2-20x-9-4x^3)/(2x(x-3)+(x-3))+2=2/(2x+1)}}}


 {{{x/(x-3)-(22x^2-20x-9-4x^3)/((2x + 1) (x - 3))+2=2/(2x+1)}}}


 {{{x(2x + 1)/((2x + 1)(x-3))-(22x^2-20x-9-4x^3)/((2x + 1) (x - 3))+2/((2x + 1)(x - 3))=2/(2x+1)}}}


{{{ (x(2x + 1)-(22x^2-20x-9-4x^3)+2(2x + 1)(x - 3))/(cross((2x + 1)) (x - 3))=2/cross((2x+1))}}}


{{{(2x^2 + x-22x^2+20x+9+4x^3+4x^2-10x-6)/(x - 3)=2}}}


{{{4x^3 - 16x^2 + 11x + 3=2(x - 3)}}}


{{{4x^3 - 16x^2 + 11x + 3=2x - 6}}}


{{{4x^3 - 16x^2 + 11x + 3-2x +6=0}}}


{{{4x^3 - 16x^2 + 9x + 9=0}}}


{{{(x - 3) (2 x - 3) (2x + 1) = 0}}}

solutions:
{{{x=3}}}-> exclude this one because it will make denominator {{{x/highlight((x-3))}}} equal to zero

{{{x=3/2}}}-> real solution

{{{x=-1/2}}}-> exclude this one because it will make denominator {{{highlight((22x^2-20x-9-4x^3)/(2x + 1))}}} equal to zero