Question 1089789
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{x^2\ +\ 12x}{24}\ =\ \frac{1}{12}]


Multiply both sides by 24


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x^2\ +\ 12x\ =\ 2]


Divide the coefficient on the first degree *[tex \Large x] term by 2, square the result, and add that amount to both sides:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x^2\ +\ 12x\ +\ 36\ =\ 38]


Factor the perfect square trinomial in the LHS


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ (x\ +\ 6)^2\ =\ 38]


Take the square root of both sides


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ +\ 6\ =\ \pm\sqrt{38}]


Solve for *[tex \Large x]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ x\ =\ -6\ \pm\sqrt{38}]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>