Question 1089165
{{{-12y=-x^2-14x-13}}}
{{{12y=x^2+14x+13}}}
{{{12y-13=x^2+14x}}}
{{{12y-13+49=x^2+14x+49}}}
{{{12y+36=(x+7)^2}}}
{{{highlight(12(y+3)=(x+7)^2)}}}------This form of equation allows to easily find vertex, and distance from either focus or directrix.




Parabola has vertex as a minimum point.
Vertex (-7,-3)
-
{{{4p=12}}}
{{{p=3}}}
-
Focus  (-7,0)
Directrix y=-6, {{{y=-6}}}


{{{graph(300,300,-16,4,-10,10,(1/12)x^2+(7/6)x+13/12)}}}