Question 1089013
{{{f(x) = -13x^2 - 13x + 14}}} and {{{g(x) = -13x - 11}}}

you have {{{g(g(x))}}}-> since you are given {{{f(x)}}} and {{{g(x)}}}; so, I believe you need to find {{{highlight(f(g(3)))}}}


 to find {{{f(highlight(g(3)))}}}, you can first evaluate {{{highlight(g(3))}}} and it will be value of {{{x}}} for {{{f(x)}}}

{{{highlight(g(3))=-13*3 - 11=-39-11=-50}}}

then, go back to {{{f(highlight(g(3)))}}} plug in {{{-50}}} for {{{highlight(g(3))}}}; so, you will have:

{{{f(highlight(-50))=-13(-50)^2 - 13(-50) + 14}}}

{{{f(highlight(-50))=-13(2500) + 650 + 14}}}
{{{f(highlight(-50))=-32500 + 650 + 14}}}
{{{f(highlight(-50))=-31836}}}


AND
{{{f(x) = 15x + 12}}} and {{{g(x) = -10x^2 + 15}}}
        find{{{ f(g(-2))}}}

{{{g(-2) = -10(-2)^2 + 15}}}
{{{g(-2) = -10*4 + 15}}}
{{{g(-2) = -40 + 15}}}
{{{g(-2) = -25}}}

then {{{ f(g(-2))=f(-25)}}}
{{{ f(g(-2))=f(-25)=15(-25) + 12}}}
{{{ f(g(-2))=f(-25)=-375 + 12}}}
{{{ f(g(-2))=f(-25)=-363}}}