Question 1088689
The points ({{{2}}},{{{v}}}) and ({{{1}}},{{{-6}}}) fall on a line with a {{{slope}}} of {{{10}}}. What is the value of {{{v}}}?

first find equation of the line: {{{y=mx+b}}} where {{{m}}} is a slope and {{{b}}} is y-intercept

since given: point ({{{1}}},{{{-6}}}) and {{{m=10}}}, we have

{{{-6=10*1+b}}}
{{{-6-10=b}}}
{{{b=-16}}}

so, your equation is: {{{y=10x-16}}}

now find {{{v}}}

({{{2}}},{{{v}}})=> {{{x=2}}} and {{{y=v}}}

{{{v=10*2-16}}}

{{{v=20-16}}}

{{{v=4}}}

and your point is:({{{2}}},{{{4}}})


{{{drawing( 600, 600, -20, 20, -20, 20,
circle(2,4,.15),circle(1,-6,.15),
locate(2,4,p(2,v=4)),locate(1,-6,p(1,-6)),
 graph( 600, 600, -20, 20, -20, 20, 10x-16)) }}}