Question 96498
These explanations are quite long, so here is a table of contents


<a name="top">
<a href=#one>Problem #1</a>
<a href=#two>Problem #2</a>





<a name="one">
#1


The equation {{{y=(-3/2)x}}} really looks like {{{y=(-3/2)x+0}}}


*[invoke graphing_linear_equations "slope-intercept", 1, 2, 3, "-3/2", 0]


<a href=#top>Jump back to the top</a>



<hr>



<a name="two">
<a href=#top>Jump back to the top</a>

#2



Since {{{b=- 4}}} this tells us that the y-intercept (the point where the graph intersects with the y-axis) is (0,{{{- 4}}}).


So we have one point (0,{{{- 4}}})


{{{drawing( 600, 600, -10,13, -18, 6,
grid( 1 ),

blue( circle( 0,-4, 0.153333333333333)),
blue( circle( 0,-4, 0.153333333333333-0.05) )
)}}}


Now since the slope is {{{-4 / 3}}}, this means that in order to go from point to point we can use the slope to do so. So starting at (0,{{{- 4}}}), we can go down 4 units 


{{{drawing(600, 600, -10,13, -18, 6,
grid(1),
blue( circle( 0,-4, 0.153333333333333)),
blue( circle( 0,-4, 0.153333333333333-0.05) )
blue( arc( 0, -4+(-4/2), 2, -4, 90, 270 ) )

)}}}
and to the right 3 units to get to our next point

{{{drawing(600, 600, -10,13, -18, 6,
grid(1),
blue( circle( 3,-8, 0.153333333333333)),
blue( circle( 3,-8, 0.153333333333333-0.05 ) ),
blue( circle( 0,-4, 0.153333333333333)),
blue( circle( 0,-4, 0.153333333333333-0.05) ),
blue( arc( 0, -4+(-4/2), 2, -4, 90, 270 ) ),
blue( arc( (3/2), -8, 3, 2, 0, 180 ) )

)}}}
Now draw a line through those points to graph {{{y = ( - 4/3 ) * x- 4}}}


{{{drawing( 600, 600, -10,13, -18, 6,
grid( 1 ),
line(-10-10,-1.33333333333333*(-10-10)+-4,13+10,-1.33333333333333*(13+10)+-4),
blue( circle( 3,-8, 0.153333333333333)),
blue( circle( 3,-8, 0.153333333333333-0.05 ) ),
blue( circle( 0,-4, 0.153333333333333)),
blue( circle( 0,-4, 0.153333333333333-0.05) ),
blue( arc( 0, -4+(-4/2), 2, -4, 90, 270 ) ),
blue( arc( (3/2), -8, 3, 2, 0, 180 ) )
)}}} So this is the graph of {{{y = ( - 4/3 ) * x- 4}}} through the points (0,-4) and (3,-8)


<a href=#top>Jump back to the top</a>