Question 1085967
The median joins the vertex to the midpoint of the opposing side. 
It's not necessarily perpendicular. 
.
.
.
A:(3,-2)
B:(-4,1)
C:(3,-5)
.
.
.
Find the midpoint of each segment,
{{{x[mAB]=(3-4)/2=-1/2}}}
{{{y[mAB]=(-2+1)/2=-1/2}}}
{{{x[mBC]=(-4+3)/2=-1/2}}}
{{{y[mBC]=(1-5)/2=-2}}}
{{{x[mAC]=(3+3)/2=3}}}
{{{y[mAC]=(-2-5)/2=-7/2}}}
.
.
.
*[illustration 9x1.JPG].
.
.
.
You can then find the lengths of each median using the distance formula,
{{{M[A]^2=(3-(-1/2))^2+(-2-(-2))^2}}}
{{{M[B]^2=(-4-3)^2+(1-(-7/2))^2}}}
{{{M[C]^2=(3-(-1/2))^2+(-5-(-1/2))^2}}}
Work those out for the final answers.