Question 1086048

If the two roots of the quadratic 7x^2+3x+k$ are (-3ħisqrt(299))/14, what is k?
<pre>Product of the roots = {{{matrix(1,3, c/a, or, k/7)}}}
Roots: {{{(- 3 +- i * sqrt(299))/14}}} =====> {{{(- 3 + i * sqrt(299))/14}}} and  {{{(- 3 - i * sqrt(299))/14}}}
We then get: {{{(- 3 + i * sqrt(299))/14 * (- 3 - i * sqrt(299))/14 = k/7}}}
Reducing, we get: {{{308/14^2 = k/7}}}
{{{14^2k = 7(308)}}} ------ Cross-multiplying
{{{highlight_green(matrix(1,5, k, "=", 7(308)/14^2, "=", highlight(11)))}}}