Question 1086029
{{{x^2 + (1-1/a)x  - 1 = 0}}}

use quadratic formula:


{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}} .....you have: {{{a=1}}}, {{{b=(1-1/a)}}}, and {{{c=-1}}}


{{{x = (-(1-1/a) +- sqrt( (1-1/a)^2-4*1*(-1) ))/(2*1) }}} 


{{{x = ((1-a)/a +- sqrt( ((a-1)/a)^2+4 ))/2 }}} 


{{{x = ((1-a)/a +- sqrt( ((a-1)^2/a^2)+4 ))/2 }}} 


{{{x = ((1-a)/a +- sqrt( ((a-1)^2/a^2)+4a^2/a^2 ))/2 }}} 


{{{x = ((1-a)/a +- sqrt( ((a-1)^2+4a^2))/sqrt(a^2) )/2 }}} 


{{{x = ((1-a)/a +- sqrt(a^2-2a+1+4a^2)/a )/2 }}}


{{{x = ((1-a +- sqrt(5a^2-2a+1))/a )/2 }}} 


{{{x = (1-a +- sqrt(5a^2-2a+1))/2a }}} for {{{a<>0}}}