Question 1085127



 {{{6x^2 + 6x + k =0}}}->{{{a=6}}}, {{{b=6}}}, and{{{ c=k}}}

if the discriminant {{{b^2-4ac>0}}}, the equation has two distinct real roots

{{{6^2-4*6k>0}}}

{{{36-24k>0}}}

{{{36>24k}}}

{{{k<36/24}}}

{{{k<6/4}}}

{{{k<3/2}}}

{{{k<1.5}}}

so, we can try {{{k=1}}} which is less than {{{k<1.5}}}

{{{6x^2 + 6x + 1 =0}}}

{{{ graph( 600, 600, -10, 10, -10, 10, 6x^2 + 6x + 1) }}} 



if the discriminant{{{ b^2-4ac=0}}}, the equation has two equal real roots

{{{6^2-4*6k=0}}}

{{{36-24k=0}}}

{{{36=24k}}}

{{{k=36/24}}}

{{{k=6/4}}}

{{{k=3/2}}}

{{{k=1.5}}}

{{{ graph( 600, 600, -10, 10, -10, 10, 6x^2 + 6x + 1.5) }}}


if the discriminant {{{b^2-4ac<0}}}, there are no real solutions

{{{6^2-4*6k<0}}}

{{{36-24k<0}}}

{{{36<24k}}}

{{{k>36/24}}}

{{{k>6/4}}}

{{{k>3/2}}}

{{{k>1.5}}}

if {{{k=2}}}->

{{{ graph( 600, 600, -10, 10, -10, 10, 6x^2 + 6x + 2) }}}