Question 95733
Simplify the complex rational expression:
Assume you mean: 
{{{(3x)/((x-4)) + 1}}}
-------------
{{{15/((x^2-16)) + 1}}}
:
Put upper and lower fractions over single denominators:
{{{(3x + (x-4))/((x-4))}}}      
-------------  =  
{{{(15 + (x^2-16))/((x^2-16))}}}
:
Combine like terms:   
 {{{((4x - 4))/((x-4))}}}
-------------
{{{((x^2-1))/((x^2-16))}}}
:
Invert the dividing fraction and multiply....then factor.... cancel (x-1), cancel (x-4),:
{{{((4x - 4))/((x-4))}}} * {{{((x^2-16))/((x^2-1))}}} = {{{(4(x - 1))/((x-4))}}} * {{{((x-4)(x+4))/((x-1)(x+1))}}} = {{{(4(x+4))/((x+1))}}}
: