Question 1083033
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \cos(x)\sin^2(x)\ -\ \frac{3\cos(x)}{4}\ =\ 0]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  4\cos(x)\sin^2(x)\ -\ 3\cos(x)\ =\ 0]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \cos(x)\left(4\sin^2(x)\ -\ 3\right)\ =\ 0]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \cos(x)\ =\ 0\ \Right\ x\ =\ \frac{\pi}{2}\ \pm\ n\pi\ \forall\ n\ \in\ \mathbb{Z}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ 4\sin^2(x)\ -\ 3\ =\ 0]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sin^2(x)\ =\ \frac{3}{4}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sin(x)\ =\ \pm\frac{\sqrt{3}}{2}\ \Right\ x\ =]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \pm\frac{\pi}{3}\ +\ n\pi\ \forall\ n\ \in\ \mathbb{Z}]


or


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \pm\frac{2\pi}{3}\ +\ n\pi\ \forall\ n\ \in\ \mathbb{Z}]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>