Question 1082949
<pre>
The formula for the volume of a cone is

{{{V=expr(1/3)pi*r^2*h}}}

Since the altitude is the same as the radius, we
substitute h=r

{{{V=expr(1/3)pi*r^2*r}}}

{{{V=expr(1/3)pi*r^3}}}

{{{dV/dr=expr(1/3)(3r^2)}}}

{{{dV/dr=r^2)}}}

{{{dV=r^2*dr}}}

Substitute the possible error in the base for dr,
and 12 for r:

{{{dV=12^2*("" +- 0.04)}}}

{{{dV="" +- matrix(1,3,5.76,cubic,centimeters)}}}  <-- approximate error in the volume.

To find the approximate percentage error, we find what the
actual volume should be:

{{{V=expr(1/3)pi*r^3}}}
{{{V=expr(1/3)pi*12^3}}}
{{{V=matrix(1,3,1809.557368,cubic,centimeters)}}}

We find what percent 5.76 cubic centimeters is of that,
we calculate {{{5.76/1809.557368 = 0.0031830989="0.31830989%"}}}

Edwin</pre>