Question 1082125
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  f(x)\ =\ \left(\frac{x\ -\ 1}{x\ +\ 1}\right)^3]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  y\ =\ \left(\frac{x\ -\ 1}{x\ +\ 1}\right)^3]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \sqrt[3]{y}\ =\ \frac{x\ -\ 1}{x\ +\ 1}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \sqrt[3]{y}\left(x\ +\ 1\right)\ =\ x\ -\ 1]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \sqrt[3]{y}(x)\ +\ \sqrt[3]{y}\ =\ x\ -\ 1]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  1\ +\ \sqrt[3]{y}\ =\ x\ -\ \sqrt[3]{y}(x)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  1\ +\ \sqrt[3]{y}\ =\ x\left(1\ -\ \sqrt[3]{y}\right)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  x\ =\ \frac{1\ +\ \sqrt[3]{y}}{1\ -\ \sqrt[3]{y}}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  y\ =\ \frac{1\ +\ \sqrt[3]{x}}{1\ -\ \sqrt[3]{x}}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  f^{-1}(x)\ =\ \frac{1\ +\ \sqrt[3]{x}}{1\ -\ \sqrt[3]{x}}]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  


</font>