Question 1081493

{{{x^3 - 2x - 4 =0}}}.....factor

{{{x^3 +2x^2+2x-2x^2-4x - 4 =0}}}

{{{(x^3-2x^2)+(2x^2-4x)+(2x - 4 )=0}}}

{{{x^2(x-2)+2x(x-2)+2(x - 2 )=0}}}

{{{(x - 2) (x^2 + 2x + 2) = 0}}}

real solution:

if {{{(x - 2) = 0}}}=>{{{x=2}}}

imaginary solutions:

{{{(x^2 + 2x + 2) = 0}}}

{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}

{{{x = (-2 +- sqrt(2^2-4*1*2 ))/(2*1) }}}

{{{x = (-2 +- sqrt(4-8 ))/2 }}}

{{{x = (-2 +- sqrt(-4 ))/2 }}}

{{{x = (-2 +- 2i)/2 }}}

{{{x = (-cross(2)1 +- cross(2)i)/cross(2)1 }}}

{{{x = (-1 +- i) }}}

{{{x = -1 +i }}} or {{{x = -1 - i }}}