Question 1080620
{{{f(x) =2/x}}} and {{{g(x) =1/(-3-x)}}} equal if

{{{2/x=1/(-3-x)}}}

{{{2(-3-x)=1*x}}}

{{{-6-2x=x}}}

{{{-6=x+2x}}}

{{{-6=3x}}}

{{{x = -2}}}

 so,if {{{x = -2}}} than 
{{{f(x) =2/-2}}}=>{{{f(x) =-1}}} and 
{{{g(x) =1/(-3-(-2))}}} =>{{{g(x) =1/(-3+2))}}} =>{{{g(x) =1/(-1))}}} =>{{{g(x) =-1}}}

so, solution is:
{{{x = -2}}}
{{{y = -1}}}

and intersection point is: 
A)	({{{-2}}},{{{-1}}})


{{{ drawing( 600, 600, -10, 10, -10, 10,
circle(-2,-1,.12),locate(-2,-1,p(-2,-1)),
graph( 600, 600, -10, 10, -10, 10, 2/x, 1/(-3-x))) }}}