Question 1075696
Could someone write the complex number of z = -2 + 2i in trigonometric form?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


I can.


<pre>
z = -2 + 2i = {{{(2*sqrt(2))*(-sqrt(2)/2 + i*(sqrt(2)/2))}}} = {{{(2*sqrt(2))*(cos(3pi/4) + i*sin(3pi/4))}}}.


The mudulus is {{{2^2 + 2^2)}}} = {{{sqrt(8)}}} = {{{2*sqrt(2)}}}.

The argument is {{{3pi/4}}}.
</pre>

If you can understand what does it mean.



If you can not, then read the lessons on complex numbers

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Complex-numbers-and-arithmetical-operations.lesson>Complex numbers and arithmetical operations on them</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Complex-plane.lesson>Complex plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Addition-and-subtraction-of-complex-numbers-in-complex-plane.lesson>Addition and subtraction of complex numbers in complex plane</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/complex/Multiplication-and-division-of-complex-numbers-in-complex-plane-.lesson>Multiplication and division of complex numbers in complex plane</A>

in this site.