Question 1075157
Let M and N be the root of an equation x^2+ax+b=0 and 
let O and P be the roots of x^2+cx+d=0. Express 
(M-O)(N-O)(M-P)(N-P) in terms of the coefficients 
a,b,c,d. 
<pre>
{{{M = (-a+sqrt(a^2-4b))/2}}}

{{{N = (-a-sqrt(a^2-4b))/2}}}

{{{O = (-c+sqrt(c^2-4d))/2}}}

{{{P = (-c-sqrt(c^2-4d))/2}}}

Therefore:

{{{(M-O)(N-O)(M-P)(N-P)}}}{{{""=""}}}

{{{((-a+sqrt(a^2-4b))/2^""-(-c+sqrt(c^2-4d))/2^"")((-a-sqrt(a^2-4b))/2^""-(-c+sqrt(c^2-4d))/2^"")((-a+sqrt(a^2-4b))/2^""-(-c-sqrt(c^2-4d))/2^"")((-a-sqrt(a^2-4b))/2^""-(-c-sqrt(c^2-4d))/2^"")}}}

I agree it isn't simplified, but it does express 
(M-O)(N-O)(M-P)(N-P) in terms of the coefficients a,b,c,d.
Nothing was mentioned about "in simplest form".

Edwin</pre>