Question 1074975
.
<pre>
{{{tan(pi/4 +arccot(3))}}} = {{{tan(alpha + beta)}}},

where {{{alpha}}} = {{{pi/4}}} and {{{beta}}} = {{{arccot(3)}}}.

Next, apply the formula

{{{tan(alpha+beta)}}} = {{{(tan(alpha)+tan(beta))/(1-tan(alpha)*tan(beta))}}}.


Take into account that  

{{{tan(alpha)}}} = {{{tan(pi/4)}}} = 1  and 

{{{tan(beta)}}} = {{{tan(arccot(3))}}} = {{{1/3}}}.


With these hints please complete calculations on your own.
</pre>


See the lessons

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Trigonometry-basics/Calculating-trigonometric-functions-of-angles.lesson>Calculating trigonometric functions of angles</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/Trigonometry-basics/Selected-problems-from-the-archive-on-calculating-trig-functions-of-angles.lesson>Advanced problems on calculating trigonometric functions of angles</A>

in this site.


Also, you have this free of charge online textbook in ALGEBRA-II in this site

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson>ALGEBRA-II - YOUR ONLINE TEXTBOOK</A>.


The referred lessons are the part of this online textbook under the topic "<U>Trigonometry: Solved problems</U>". 

in this site.