Question 1072597
{{{g(f)=5f-12=5(0.5*2^(x))-12=2^(x)-12}}}
So then,
{{{g(f(0))=2^(0)-12=1-12=-11}}}
.
.
.
{{{f(g)=0.5(2^(5x-12))}}}
Yes, correct.
.
.
.
Use x,y nomenclature.
Substitute x and y and solve for the new y.
{{{y=0.5(2^x)}}}
{{{x=0.5(2^y)}}}
{{{2x=2^y}}}
{{{y=log((2x))/log((2))}}}
{{{f^(-1)(x)=log((2x))/log((2))}}}