Question 1072012
So when {{{x=a}}},
{{{y=a(a^2)-ba}}}
{{{y=a^3-ba}}}
If {{{y=b}}},
{{{b=a^3-ba}}}
{{{b+ba=a^3}}}
{{{b(1+a)=a^3}}}
{{{b=a^3/(1+a)}}}
So if {{{b>(a^3/(1+a))}}}, then the point is above the curve and if {{{b<(a^3/(1+a))}}}, then the point is below the curve.
So you can make a chart (I used EXCEL),
.
.
*[illustration fr4.JPG].
.
.
I cut it off because all remaining points show FALSE, (a,b) is below the curve.
So there are 81 possible outcomes, 19 of them have the point above the curve,
{{{P=19/81}}}
.
.
.
A couple of data points shown with their accompanying graphs,
.
.
.
*[illustration fr5.JPG].