Question 1070032
how many digits are in the number represented by the
expression 2 to the power of 5201 times 5 to the power of
2560 divided by 8 to the power of 882???
<pre>
{{{(2^5201*5^2560)/8^882}}}{{{""=""}}}

{{{(2^(2641+2560)*5^2560)/(2^3)^882}}}{{{""=""}}}

{{{(2^2641*2^2560*5^2560)/2^2646}}}{{{""=""}}}

{{{(2^2641*(2^2560*5^2560))/2^2646}}}{{{""=""}}}

{{{(2^2641*10^2560)/2^2646}}}{{{""=""}}}

{{{(10^2560)/2^5}}}{{{""=""}}}

{{{(10^2560)/32}}}{{{""=""}}}

{{{expr(1/32)*(10^2560)}}}{{{""=""}}}

{{{0.03125*(10^2560)}}}{{{""=""}}}

{{{3.125*10^(-2)*(10^2560)}}}{{{""=""}}}

{{{3.125*10^2558}}}{{{""=""}}}

So since {{{10^1=10}}} has 2 digits and
{{{10^2=100}}} has 3 digits, etc.,
then {{{10^2558}}} has 2559 digits, and
so does {{{3.125*10^2558}}}

Edwin</pre>