Question 1068436
If I read this right, every 5 minutes, the number
of people who get the message doubles.
At start time {{{ t }}} , {{{ 1 }}} person
{{{ t + 5 }}}, {{{ 1 + 2^1 = 3 }}}
{{{ t + 10 }}}, {{{ 1 + 2^1 + 2^2 = 7 }}}
{{{ t + 15 }}}, {{{ 1 + 2^1 + 2^2 + 2^3 = 15 }}}
{{{ t + 20 }}}, {{{ 1 + 2^1 + 2^2 + 2^3 + 2^4 = 31 }}}
It looks like, if {{{ n }}} is the number of 5 minute
intervals, then the number of people with the
message is {{{ 2^( n+1 ) - 1 }}}
-------------------------
At 10:30 {{{ 729 }}} people got the message
{{{ 2^( n + 1 ) - 1 = 729 }}}
{{{ 2^( n+1 ) = 730 }}}
{{{ ( n+1 )*log(2)  = log( 729 ) }}}
{{{ .30103*( n+1 ) = 2.86273 }}}
{{{ n + 1 = 2.86273/.30103 }}}
{{{ n + 1 = 9.50977 }}}
{{{ n = 8.50977 }}}
and
{{{ 8.50977*5 = 42.5489 }}} minutes
------------------------------------
10:30 minus {{{ 30 }}} min is 10:00
That leaves {{{ 12.5489 }}} min
{{{ 60 - 12.5489 = 47.4511 }}}
also: {{{ .4511*60 = 27 }}}
------------------------------------
The 1st person know the message at 9:47:27
----------------------------------------
DEFINITELY get another opinion on this.
I'm pretty much winging it here