Question 1067864
<font face="Times New Roman" size="+2">


The range of *[tex \Large y\ =\ a\cdot b^x] is *[tex \Large \left{y\ \in\ \mathbb{R}\ |\ y\ >\ 0\right}\ \forall a,\ b\ \in \mathbb{R}\ |\ a\ >\ 0]


To find the *[tex \Large  y]-intercept, substitute *[tex \Large 0] for *[tex \Large x] and then do the arithmetic.  Recall that *[tex \Large b^0\ =\ 1\ \forall\ b\ \in\ \mathbb{R}]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>