Question 93252
Simplify completely: ( x + 7 )/( x - 7 ) divided by (x2 - 49 )/( 7 - x )
:
{{{((x+7))/((x-7))}}}
------------
{{{((x^2-49))/((7-x))}}}
:
We can rewrite (7-x) to -1(x-7) and factor (x^2-49), (difference of squares)
{{{((x+7))/((x-7))}}}
------------
{{{((x-7)(x+7))/(-1(x-7))}}}
:
Cancel out the (x-7)'s in the dividing fraction
{{{((x+7))/((x-7))}}}
------------
{{{((x+7))/(-1)}}}
:
Invert the dividing fraction and multiply
{{{((x+7))/((x-7))}}} * -{{{1/((x+7))}}} = -{{{1/((x-7))}}}; canceled (x+7)'s
;
How about this, did it make sense to you?