Question 1064139
Two dice are rolled. What is the probability that:
<pre>
There are 36 possible rolls. I'll color the "successful" \
rolls red in each case.
</pre>
a. the numbers that come up have a sum of at least 3?
<pre>
(1,1) <font color="red"><b>(1,2) (1,3) (1,4) (1,5) (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)</font></b>  

Count the red ones. That's 35 out of 36 for a 
probability of 35/36.
</pre>
b. the numbers that come up have a sum of 4 or 10?
<pre>
(1,1) (1,2) <font color="red"><b>(1,3)</font></b> (1,4) (1,5) (1,6)

(2,1) <font color="red"><b>(2,2)</font></b> (2,3) (2,4) (2,5) (2,6) 

<font color="red"><b>(3,1)</font></b> (3,2) (3,3) (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3) (4,4) (4,5) <font color="red"><b>(4,6)</font></b>  

(5,1) (5,2) (5,3) (5,4) <font color="red"><b>(5,5)</font></b> (5,6) 

(6,1) (6,2) (6,3) <font color="red"><b>(6,4)</font></b> (6,5) (6,6)  

Count the red ones. That's 6 out of 36 for a 
probability of 6/36, which reduces to 1/6.
</pre>
c. the numbers that come up are both odd or have a sum of at least 8?
<pre>
<font color="red"><b>(1,1)</font></b> (1,2) <font color="red"><b>(1,3)</font></b> (1,4) <font color="red"><b>(1,5)</font></b>  (1,6)

(2,1) (2,2) (2,3) (2,4) (2,5) <font color="red"><b>(2,6)</font></b>  

<font color="red"><b>(3,1)</font></b> (3,2) <font color="red"><b>(3,3)</font></b> (3,4) <font color="red"><b>(3,5) (3,6)</font></b> 

(4,1) (4,2) (4,3) <font color="red"><b>(4,4) (4,5) (4,6)</b></font> 

<font color="red"><b>(5,1)</font></b> (5,2) <font color="red"><b>(5,3) (5,4) (5,5) (5,6)</font></b> 

(6,1) <font color="red"><b>(6,2) (6,3) (6,4) (6,5) (6,6)</font></b> 

Count the red ones. That's 21 out of 36 for a 
probability of 21/36, which reduces to 7/12.
</pre>
d. one number is odd and the other is even or the numbers have a sum of at least 10?
<pre>
(1,1) <font color="red"><b>(1,2)</font></b> (1,3) <font color="red"><b>(1,4)</font></b> (1,5) <font color="red"><b>(1,6)</font></b> 

<font color="red"><b>(2,1)</font></b> (2,2) <font color="red"><b>(2,3)</font></b> (2,4) <font color="red"><b>(2,5)</font></b> (2,6) 

(3,1) <font color="red"><b>(3,2)</font></b> (3,3) <font color="red"><b>(3,4)</font></b> (3,5) <font color="red"><b>(3,6)</b></font> 

<font color="red"><b>(4,1)</font></b> (4,2) <font color="red"><b>(4,3)</font></b> (4,4) <font color="red"><b>(4,5)</font></b> <font color="red"><b>(4,6)</font></b> 

(5,1) <font color="red"><b>(5,2)</font></b> (5,3) <font color="red"><b>(5,4) (5,5) (5,6) 

(6,1)</font></b> (6,2) <font color="red"><b>(6,3) (6,4) (6,5) (6,6)</font></b>

Count the red ones. That's 22 out of 36 for a 
probability of 11/18.

Edwin</pre>