Question 1063396
We use the normal distribution z-tables and the associated probability(P) to solve this problem
:
P ( 29.95 < X < 30.05 ) = P ( X < 30.05 ) - P ( X < 29.95)
:
z-value for 30.05 is (30.05 - 30.00) / 0.05 = 1, therefore
P ( X < 30.05 ) = 0.8413
:
z-value for 29.95 is (29.95 - 30.00) / 0.05 = -1, therefore
P ( X < 29.95 ) = 0.1587
:
**************************************************
P ( 29.95 < X < 30.05 ) = 0.8413 - 0.1587 = 0.6826
**************************************************
: