Question 1063043
Original fraction,
{{{X/(X+2)}}}
New fraction,
{{{(X-1)/(X+2+3)=(X-1)/(X+5)}}}
So then,
{{{(X-1)/(X+5)=(1/2)(X/(X+2))}}}
{{{2(X-1)(X+2)=X(X+5)}}}
{{{2(X^2+2X-X-2)=X^2+5X}}}
{{{2X^2+2X-4=X^2+5X}}}
{{{X^2-3X-4=0}}}
{{{(X-4)(X+1)=0}}}
Two solutions:
{{{X-4=0}}}
{{{X=4}}}
and
{{{X+1=0}}}
{{{X=-1}}}
So the original fraction was
{{{4/(4+2)=4/6=2/3}}}
or
{{{-1/(-1+2)=-1/1=-1}}}