Question 1062576
<pre><b><font size=4><font face="arial">
18<sup>180</sup> = (2<sup>1</sup>3<sup>2</sup>)<sup>180</sup> = 2<sup>180</sup>3<sup>360</sup>

Let N be the least integer power of 12 that is divisible by 18<sup>180</sup>.

12<sup>N</sup> = (2<sup>2</sup>3<sup>1</sup>)<sup>N</sup> = 2<sup>2N</sup>3<sup>N</sup>

So we divide:

{{{(2^(2N)*3^N)/(2^180*3^360)}}} = 2<sup>(2N-180)</sup>3<sup>(N-360)</sup>.

The smallest integers N can be must be just enough to make
sure those powers of 2 and 3 are not negative.

So N-360 = 0 or N = 360, 

(and certainly then 2N-180 = 360-180=180 is not negative.)

So N = 360.

Edwin</pre></b></font></font>