Question 1062413
The second number, {{{n[2]}}} , is
{{{"100%"+"20%"="120%"=120/100=6/5=1.2}}} times the first number, {{{n[1]}} .
So, {{{n[2]=1.2*n[1]=(5/6)*n[1]}}}
{{{n[1]=n[2]/1.2=n[2]/((6/5))=(5/6)*n[2]}}}
That tells you that {{{n[1]}}} is less than {{{n[2]}}} by a difference of
{{{n[2]-n[1]=(1/6)n[2]="about0.1667"*n[2]}}} .
As a fraction or percentage of {{{n[2]}}} ,
the first number, {{{n[1]}}} , is less than the second number, {{{n[2]}}} , by
{{{1/6=((1/6))/100=100/6}}}{{{"%"=16&2/3}}}{{{"%"}}} .
If you want the percentage as a decimal,
you will have to be content with an approximate number.
{{{0.1667=16.67/100="16.67%"}}} .