Question 1062122
<pre>
{{{matrix(2,1,"",sin(2x)cos(pi/3) - cos(2x)sin(pi/3) + 3^(1/2)(cos(2x)cos(pi/3) + sin(2x)sin(pi/3))-3^(1/2))}}}{{{""=""}}}{{{0}}}

{{{sin(2x)cos(pi/3) - cos(2x)sin(pi/3) + sqrt(3)(cos(2x)cos(pi/3) + sin(2x)sin(pi/3))-sqrt(3)}}}{{{""=""}}}{{{0}}}

Since {{{cos(pi/3)=1/2}}} and {{{sin(pi/3)=sqrt(3)/2}}}

{{{expr(1/2)sin(2x)-expr(sqrt(3)/2)cos(2x)+sqrt(3)( expr(1/2)cos(2x)+expr(sqrt(3)/2)sin(2x) )-sqrt(3)}}}{{{""=""}}}{{{0}}}

{{{expr(1/2)sin(2x)-expr(sqrt(3)/2)cos(2x)+expr(sqrt(3)/2)cos(2x)+expr(3/2)sin(2x)-sqrt(3)}}}{{{""=""}}}{{{0}}}

The 2nd and 3rd terms cancel out, and the 1st and 4th terms
are like terms and can be combined

{{{2sin(2x)-sqrt(3)}}}{{{""=""}}}{{{0}}}

{{{2sin(2x)}}}{{{""=""}}}{{{sqrt(3)}}}

{{{sin(2x)}}}{{{""=""}}}{{{sqrt(3)/2}}}

{{{2x}}}{{{""=""}}}{{{matrix(1,3,pi/3+2pi*n,or,2pi/3+2pi*n)}}}

{{{x}}}{{{""=""}}}{{{matrix(1,3,pi/6+pi*n,or,pi/3+pi*n)}}}

Edwin</pre>