Question 1060489
<pre>
{{{x^2+x}}}{{{""=""}}}{{{11/4}}}

{{{x^2+1x}}}{{{""=""}}}{{{11/4}}}

The coefficient of x is 1.
Multiply it by {{{1/2}}}.   {{{1*expr(1/2)}}}{{{""=""}}}{{{1/2}}}
Square what you get.        {{{(1/2)^2}}}{{{""=""}}}{{{1/4}}}
Add that to both sides of the equation.

{{{x^2+1x+1/4}}}{{{""=""}}}{{{11/4+1/4}}}

The left side now factors as {{{(x+1/2)(x+1/2)}}} which we write
simply as {{{(x+1/2)^2}}}, and combine the terms on the right.

{{{(x+1/2)^2}}}{{{""=""}}}{{{12/4}}}

Since {{{12/4=3}}},

{{{(x+1/2)^2}}}{{{""=""}}}{{{3}}}

We take square roots of both sides, remembering the ± on the right:

{{{x+1/2}}}{{{""=""}}}{{{"" +- sqrt(3)}}}

Now we get two answers, one using the + sign and one using the - sign:

{{{x+1/2}}}{{{""=""}}}{{{"" + sqrt(3)}}}, {{{x+1/2}}}{{{""=""}}}{{{"" - sqrt(3)}}} 

{{{x}}}{{{""=""}}}{{{-1/2 + sqrt(3)}}}, {{{x}}}{{{""=""}}}{{{-1/2 - sqrt(3)}}}

Edwin</pre>