Question 1059450
<font face="Times New Roman" size="+2">


Let *[tex \Large u\ =\ \sin(\theta)]


Then


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  2u^2\ -\ 3u\ +\ 1\ =\ 0]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  (2u\ -\ 1)(u\ -\ 1)\ =\ 0]


So *[tex \Large u\ =\ \frac{1}{2}] or *[tex \Large u\ =\ 1]


Substituting back: *[tex \Large \sin(\theta)\ =\ \frac{1}{2}] or *[tex \Large \sin(\theta)\ =\ 1]


Therefore:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \theta\ =\ \sin^{-1}\left(\frac{1}{2}\right)]


or


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \theta\ =\ \sin^{-1}(1)]


The sine of an angle is represented by the *[tex \Large y]-coordinate of the point of intersection of the terminal ray of the angle and the unit circle.  Use the unit circle to find all of the possible exact values of *[tex \Large \theta]


*[illustration unit_circle11_43203_lg.jpg]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>