Question 1058831
Evaluate the following expression.
sin(90°-θ)*tan(θ)*sec(θ)

A)  sin(θ)
B)  cos(θ)
C)  tan(θ)
D)  cot(θ)
<pre><b><font size = 4>
The word "cosine", "<u>CO</u> <u>SINE</u>", is an abbreviation for <u>CO</u>mplement's <u>SIN</u>e.

90°-&#952; is the <u>CO</u>mplement of &#952;, so sin(90°-&#952;) is the 
<u>CO</u>mplement of &#952;'s <u>SIN</u>e, so 

sin(90°-&#952;) equals cos(&#952;).

Therefore:

sin(90°-&#952;)*tan(&#952;)*sec(&#952;) = 

cos(&#952;)*tan(&#952;)*sec(&#952;) =

Use reciprocal identity for sec(&#952;):

{{{cos(theta)*tan(theta)*expr( 1/cos(theta) )}}}{{{""=""}}}

{{{cross(cos(theta))*tan(theta)*expr( 1/cross(cos(theta)) )}}}{{{""=""}}}
 
{{{tan(theta)}}}

Edwin</pre></b></pre>