Question 1057007

{{{ (1)/(a-b) - (a*b)/(a^3-b^3) }}} i know the answer is {{{ (a^2+b^2)/(a^3-b^3) }}} but how do i get to the answer?
<pre>{{{1/(a - b) - ab/(a^3 - b^3)}}}
{{{1/(a - b) - ab/(a - b)(a^2 + ab + b^2)}}} ------ Factoring DENOMINATOR of 2nd fraction: {{{a^3 - b^3}}}
{{{(a^2 + ab + b^2 - ab)/((a - b)(a^2 + ab + b^2))}}} ----------- Multiplying each fraction by LCD, {{{(a - b)(a^2 + ab + b^2)}}}
{{{highlight_green(matrix(1,3, (a^2 + b^2)/((a - b)(a^2 + ab + b^2)), or, (a^2 + b^2)/(a^3 - b^3)))}}}